Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Trends in Biomathematics: Stability and Oscillations in Environmental, Social, and Biological Models: Selected Works from the BIOMAT Consortium Lectures, Rio de Janeiro, Brazil, 2021 ; : 1-425, 2023.
Article in English | Scopus | ID: covidwho-20239956

ABSTRACT

This contributed volume convenes selected, peer-reviewed works presented at the BIOMAT 2021 International Symposium, which was virtually held on November 1-5, 2021, with its organization staff based in Rio de Janeiro, Brazil. In this volume the reader will find applications of mathematical modeling on health, ecology, and social interactions, addressing topics like probability distributions of mutations in different cancer cell types;oscillations in biological systems;modeling of marine ecosystems;mathematical modeling of organs and tissues at the cellular level;as well as studies on novel challenges related to COVID-19, including the mathematical analysis of a pandemic model targeting effective vaccination strategy and the modeling of the role of media coverage on mitigating the spread of infectious diseases. Held every year since 2001, the BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. BIOMAT volumes published from 2017 to 2020 are also available by Springer. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20236340

ABSTRACT

Airborne pathogen transmission mechanisms play a key role in the spread of infectious diseases such as COVID-19. In this work, we propose a computational fluid dynamics (CFD) approach to model and statistically characterize airborne pathogen transmission via pathogen-laden particles in turbulent channels from a molecular communication viewpoint. To this end, turbulent flows induced by coughing and the turbulent dispersion of droplets and aerosols are modeled by using the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-model and the discrete random walk model, respectively. Via simulations realized by a CFD simulator, statistical data for the number of received particles are obtained. These data are post-processed to obtain the statistical characterization of the turbulent effect in the reception and to derive the probability of infection. Our results reveal that the turbulence has an irregular effect on the probability of infection, which shows itself by the multi-modal distribution as a weighted sum of normal and Weibull distributions. Furthermore, it is shown that the turbulent MC channel is characterized via multi-modal, i.e., sum of weighted normal distributions, or stable distributions, depending on the air velocity. Crown

3.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20231905

ABSTRACT

During the COVID-19 Pandemic, the need for rapid and reliable alternative COVID-19 screening methods have motivated the development of learning networks to screen COVID-19 patients based on chest radiography obtained from Chest X-ray (CXR) and Computed Tomography (CT) imaging. Although the effectiveness of developed models have been documented, their adoption in assisting radiologists suffers mainly due to the failure to implement or present any applicable framework. Therefore in this paper, a robotic framework is proposed to aid radiologists in COVID-19 patient screening. Specifically, Transfer learning is employed to first develop two well-known learning networks (GoogleNet and SqueezeNet) to classify positive and negative COVID-19 patients based on chest radiography obtained from Chest X-Ray (CXR) and CT imaging collected from three publicly available repositories. A test accuracy of 90.90%, sensitivity and specificity of 94.70% and 87.20% were obtained respectively for SqueezeNet and a test accuracy of 96.40%, sensitivity and specificity of 95.50% and 97.40% were obtained respectively for GoogleNet. Consequently, to demonstrate the clinical usability of the model, it is deployed on the Softbank NAO-V6 humanoid robot which is a social robot to serve as an assistive platform for radiologists. The strategy is an end-to-end explainable sorting of X-ray images, particularly for COVID-19 patients. Laboratory-based implementation of the overall framework demonstrates the effectiveness of the proposed platform in aiding radiologists in COVID-19 screening. Author

4.
Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis ; : 1-405, 2021.
Article in English | Scopus | ID: covidwho-2325423

ABSTRACT

This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. In the past, it was a common requirement to have domain experts for developing models for biomedical or healthcare. However, recent advances in representation learning algorithms allow us to automatically learn the pattern and representation of the given data for the development of such models. Medical Image Mining, a novel research area (due to its large amount of medical images) are increasingly generated and stored digitally. These images are mainly in the form of: computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new and useful information that can be helpful for scientists and biomedical practitioners. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

5.
Ieee Internet of Things Journal ; 10(4):2802-2810, 2023.
Article in English | Web of Science | ID: covidwho-2308234

ABSTRACT

This article introduced a new deep learning framework for fault diagnosis in electrical power systems. The framework integrates the convolution neural network and different regression models to visually identify which faults have occurred in electric power systems. The approach includes three main steps: 1) data preparation;2) object detection;and 3) hyperparameter optimization. Inspired by deep learning and evolutionary computation (EC) techniques, different strategies have been proposed in each step of the process. In addition, we propose a new hyperparameters optimization model based on EC that can be used to tune parameters of our deep learning framework. In the validation of the framework's usefulness, experimental evaluation is executed using the well known and challenging VOC 2012, the COCO data sets, and the large NESTA 162-bus system. The results show that our proposed approach significantly outperforms most of the existing solutions in terms of runtime and accuracy.

6.
IEEE Transactions on Engineering Management ; : 1-14, 2023.
Article in English | Scopus | ID: covidwho-2292273

ABSTRACT

In a closed-loop supply chain (CLSC), acquiring end-of-life vehicles (ELVs) and their components from both primary and secondary markets has posed a huge uncertainty and risk. Moreover, the constant supply of ELV components with minimization of cost and exploitation of natural resources is another pressing challenge. To address the issues, the present study has developed a risk simulation framework to study market uncertainty/risk in a CLSC. In the first phase of the framework, a total of 12 important variables are identified from the existing studies. The total interpretive structural model (TISM) is used to develop a causal relationship network among the variables. Then, Matriced Impacts Cruoses Multiplication Applique a un Classement is used for determining the nature of relationships (i.e., driving or dependence power). In the second phase, the relationship of TISM is used to derive a Bayesian belief network model for determining the level of risks (i.e., high, medium, and low) associated with the CLSC through the generation of conditional probabilities across 1) multi-, 2) single-, and 3) without-parent nodes. The study findings will help decision-makers in adopting strategic and operational interventions to increase the effectiveness and resiliency of the network. Furthermore, it will help practitioners to make decisions on change management implementation for stakeholders'performance audits on the attributes of the ELV recovery program and developing resilience in the CLSC network. Overall, the present study holistically contributes to a broader investigation of the implications of strategic decisions in automobile manufacturers and resellers. IEEE

7.
IEEE Transactions on Multimedia ; : 1-7, 2023.
Article in English | Scopus | ID: covidwho-2306433

ABSTRACT

Wearing masks can effectively inhibit the spread and damage of COVID-19. A device-edge-cloud collaborative recognition architecture is designed in this paper, and our proposed device-edge-cloud collaborative recognition acceleration method can make full use of the geographically widespread computing resources of devices, edge servers, and cloud clusters. First, we establish a hierarchical collaborative occluded face recognition model, including a lightweight occluded face detection module and a feature-enhanced elastic margin face recognition module, to achieve the accurate localization and precise recognition of occluded faces. Second, considering the responsiveness of occluded face detection services, a context-aware acceleration method is devised for collaborative occluded face recognition to minimize the service delay. Experimental results show that compared with state-of-the-art recognition models, the proposed acceleration method leveraging device-edge-cloud collaborations can effectively reduce the recognition delay by 16%while retaining the equivalent recognition accuracy. IEEE

8.
The Great Power Competition Volume 2: Contagion Effect: Strategic Competition in the COVID-19 Era ; 2:167-184, 2022.
Article in English | Scopus | ID: covidwho-2298337

ABSTRACT

The COVID-19 pandemic has seriously challenged the security of a number of countries world-wide. It has also challenged efforts to conceptualize and therefore analyze its occurrence, course, and effects. I argue that the concept of the Gray Rhino, a rare, impactful event that has detectable signals, is the best framework for anticipating, understanding, and mitigating the pandemic and similar Gray Rhino threats. Because Gray Rhinos are rare, they challenge traditional concepts of prediction and this paper will also explore what prediction can usefully mean in the context of Gray Rhino events. Properly conceptualizing pandemics as Gray Rhinos is important because COVID-19 will undoubtedly not be the last pandemic the world, and the U.S., will face. It is even more important to have a conceptual and analytical framework for Gray Rhino events in general because there are other systemic shocks (natural disasters, political upheavals, economic crises, major terrorist attacks) that are equally rare, impactful, and detectable, and that have similar social, economic, and political effects. Modeling the complexity of the systems that produce and are impacted by Gray Rhinos is also essential;the immediate effects of a Gray Rhino can often be mitigated (e.g. increased production of equipment and vaccines, economic aid) but the more pernicious effects ripple throughout the system, sometimes for years. An analytical framework for detecting Gray Rhinos needs to be developed and sustained so that the nation can plan against, anticipate, and mitigate in order to enhance the nation's durability. This paper outlines an analytical framework necessary to accomplish this and provides recommendations for how such a system could be sustained as a government/academic/private sector consortium. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

9.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-2297807

ABSTRACT

Convolutional neural networks (CNNs) have gained popularity for Internet-of-Healthcare (IoH) applications such as medical diagnostics. However, new research shows that adversarial attacks with slight imperceptible changes can undermine deep neural network techniques in healthcare. This raises questions regarding the safety of deploying these IoH devices in clinical situations. In this paper, we review the techniques used in fighting against cyber-attacks. Then, we propose to study the robustness of some well-known CNN architectures’belonging to sequential, parallel, and residual families, such as LeNet5, MobileNetV1, VGG16, ResNet50, and InceptionV3 against fast gradient sign method (FGSM) and projected gradient descent (PGD) attacks, in the context of classification of chest radiographs (X-rays) based on the IoH application. Finally, we propose to improve the security of these CNN structures by studying standard and adversarial training. The results show that, among these models, smaller models with lower computational complexity are more secure against hostile threats than larger models that are frequently used in IoH applications. In contrast, we reveal that when these networks are learned adversarially, they can outperform standard trained networks. The experimental results demonstrate that the model performance breakpoint is represented by γ= 0.3 with a maximum loss of accuracy tolerated at 2%. Author

10.
Front Psychiatry ; 14: 995445, 2023.
Article in English | MEDLINE | ID: covidwho-2300106

ABSTRACT

Background: The COVID-19 pandemic has been associated with increased rates of mental health problems, particularly in younger people. Objective: We quantified mental health of online workers before and during the COVID-19 pandemic, and cognition during the early stages of the pandemic in 2020. A pre-registered data analysis plan was completed, testing the following three hypotheses: reward-related behaviors will remain intact as age increases; cognitive performance will decline with age; mood symptoms will worsen during the pandemic compared to before. We also conducted exploratory analyses including Bayesian computational modeling of latent cognitive parameters. Methods: Self-report depression (Patient Health Questionnaire 8) and anxiety (General Anxiety Disorder 7) prevalence were compared from two samples of Amazon Mechanical Turk (MTurk) workers ages 18-76: pre-COVID 2018 (N = 799) and peri-COVID 2020 (N = 233). The peri-COVID sample also completed a browser-based neurocognitive test battery. Results: We found support for two out of three pre-registered hypotheses. Notably our hypothesis that mental health symptoms would increase in the peri-COVID sample compared to pre-COVID sample was not supported: both groups reported high mental health burden, especially younger online workers. Higher mental health symptoms were associated with negative impacts on cognitive performance (speed/accuracy tradeoffs) in the peri-COVID sample. We found support for two hypotheses: reaction time slows down with age in two of three attention tasks tested, whereas reward function and accuracy appear to be preserved with age. Conclusion: This study identified high mental health burden, particularly in younger online workers, and associated negative impacts on cognitive function.

11.
IEEE Transactions on Cloud Computing ; 11(1):278-290, 2023.
Article in English | ProQuest Central | ID: covidwho-2276770

ABSTRACT

The price of virtual machine instances in the Amazon EC2 spot model is often much lower than in the on-demand counterpart. However, this price reduction comes with a decrease in the availability guarantees. Several mechanisms have been proposed to analyze the spot model in the last years, employing different strategies. To our knowledge, there is no work that accurately captures the trade-off between spot price and availability, for short term analysis, and does long term analysis for spot price tendencies, in favor of user decision making. In this work, we propose (a) a utility-based strategy, that balances cost and availability of spot instances and is targeted to short-term analysis, and (b) a LSTM (Long Short Term Memory) neural network framework for long term spot price tendency analysis. Our experiments show that, for r4.2xlarge, 90 percent of spot bid suggestions ensured at least 5.73 hours of availability in the second quarter of 2020, with a bid price of approximately 38 percent of the on-demand price. The LSTM experiments were able to predict spot prices tendencies for several instance types with very low error. Our LSTM framework predicted an average value of 0.19 USD/hour for the r5.2xlarge instance type (Mean Squared Error [Formula Omitted]) for a 7-day period of time, which is about 37 percent of the on-demand price. Finally, we used our combined mechanism on an application that compares thousands of SARS-CoV-2 DNA sequences and show that our approach is able to provide good choices of instances, with low bids and very good availability.

12.
J Biomol Struct Dyn ; : 1-18, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-2285448

ABSTRACT

In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks.Communicated by Ramaswamy H. Sarma.

13.
IEEE Transactions on Computational Social Systems ; : 2023/11/01 00:00:00.000, 2023.
Article in English | Scopus | ID: covidwho-2237138

ABSTRACT

Simulating human mobility contributes to city behavior discovery and decision-making. Although the sequence-based and image-based approaches have made impressive achievements, they still suffer from respective deficiencies such as omitting the depiction of spatial properties or ordinal dependency in trajectory. In this article, we take advantage of the above two paradigms and propose a semantic-guiding adversarial network (TrajSGAN) for generating human trajectories. Specifically, we first devise an attention-based generator to yield trajectory locations in a sequence-to-sequence manner. The encoded historical visits are queried with semantic knowledge (e.g., travel modes and trip purposes) and their important features are enhanced by the multihead attention mechanism. Then, we designate a rollout module to complete the unfinished trajectory sequence and transform it into an image that can depict its spatial structure. Finally, a convolutional neural network (CNN)-based discriminator signifies how “real”the trajectory image looks, and its output is regarded as a reward signal to update the generator by the policy gradient. Experimental results show that the proposed TrajSGAN model significantly outperforms the benchmarks under the MTL-Trajet mobility dataset, with the divergence of spatial-related metrics such as radius of gyration and travel distance reduced by 10%–27%. Furthermore, we apply the real and synthetic trajectories, respectively, to simulate the COVID-19 epidemic spreading under three preventive actions. The coefficient of determination metric between real and synthetic results achieves 91%–98%, indicating that the synthesized data from TrajSGAN can be leveraged to study the epidemic diffusion with an acceptable difference. All of these results verify the superiority and utility of our proposed method. IEEE

14.
IEEE Access ; : 2023/01/01 00:00:00.000, 2023.
Article in English | Scopus | ID: covidwho-2232236

ABSTRACT

This paper provides a follow-up audit of security checkpoints (or simply checkpoints) for mass transportation hubs such as airports and seaports aiming at the post-pandemic R&D adjustments. The goal of our study is to determine biometric-enabled resources of checkpoints for a counter-epidemic response. To achieve the follow-up audit goals, we embedded the checkpoint into the Emergency Management Cycle (EMC) –the core of any doctrine that challenges disaster. This embedding helps to identify the technology-societal gaps between contemporary and post-pandemic checkpoints. Our study advocates a conceptual exploration of the problem using EMC profiling and formulates new tasks for checkpoints based on the COVID-19 pandemic lessons learned. In order to increase practical value, we chose a case study of face biometrics for an experimental post-pandemic follow-up audit. Author

15.
IEEE Transactions on Parallel and Distributed Systems ; : 2015/01/01 00:00:00.000, 2023.
Article in English | Scopus | ID: covidwho-2232135

ABSTRACT

Simulation-based Inference (SBI) is a widely used set of algorithms to learn the parameters of complex scientific simulation models. While primarily run on CPUs in High-Performance Compute clusters, these algorithms have been shown to scale in performance when developed to be run on massively parallel architectures such as GPUs. While parallelizing existing SBI algorithms provides us with performance gains, this might not be the most efficient way to utilize the achieved parallelism. This work proposes a new parallelism-aware adaptation of an existing SBI method, namely approximate Bayesian computation with Sequential Monte Carlo(ABC-SMC). This new adaptation is designed to utilize the parallelism not only for performance gain, but also toward qualitative benefits in the learnt parameters. The key idea is to replace the notion of a single ‘step-size’hyperparameter, which governs how the state space of parameters is explored during learning, with step-sizes sampled from a tuned Beta distribution. This allows this new ABC-SMC algorithm to more efficiently explore the state-space of the parameters being learned. We test the effectiveness of the proposed algorithm to learn parameters for an epidemiology model running on a Tesla T4 GPU. Compared to the parallelized state-of-the-art SBI algorithm, we get similar quality results in <inline-formula><tex-math notation="LaTeX">$\sim 100 \times$</tex-math></inline-formula> fewer simulations and observe <inline-formula><tex-math notation="LaTeX">$\sim 80 \times$</tex-math></inline-formula> lower run-to-run variance across 10 independent trials. IEEE

16.
WIREs Mech Dis ; 15(3): e1599, 2023.
Article in English | MEDLINE | ID: covidwho-2219884

ABSTRACT

A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.


Subject(s)
COVID-19 , Interleukin-17 , Animals , Humans , Inflammation , Chronic Disease , Computer Simulation
17.
JMIR Public Health Surveill ; 9: e40036, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2215067

ABSTRACT

BACKGROUND: Telehealth has been widely used for new case detection and telemonitoring during the COVID-19 pandemic. It safely provides access to health care services and expands assistance to remote, rural areas and underserved communities in situations of shortage of specialized health professionals. Qualified data are systematically collected by health care workers containing information on suspected cases and can be used as a proxy of disease spread for surveillance purposes. However, the use of this approach for syndromic surveillance has yet to be explored. Besides, the mathematical modeling of epidemics is a well-established field that has been successfully used for tracking the spread of SARS-CoV-2 infection, supporting the decision-making process on diverse aspects of public health response to the COVID-19 pandemic. The response of the current models depends on the quality of input data, particularly the transmission rate, initial conditions, and other parameters present in compartmental models. Telehealth systems may feed numerical models developed to model virus spread in a specific region. OBJECTIVE: Herein, we evaluated whether a high-quality data set obtained from a state-based telehealth service could be used to forecast the geographical spread of new cases of COVID-19 and to feed computational models of disease spread. METHODS: We analyzed structured data obtained from a statewide toll-free telehealth service during 4 months following the first notification of COVID-19 in the Bahia state, Brazil. Structured data were collected during teletriage by a health team of medical students supervised by physicians. Data were registered in a responsive web application for planning and surveillance purposes. The data set was designed to quickly identify users, city, residence neighborhood, date, sex, age, and COVID-19-like symptoms. We performed a temporal-spatial comparison of calls reporting COVID-19-like symptoms and notification of COVID-19 cases. The number of calls was used as a proxy of exposed individuals to feed a mathematical model called "susceptible, exposed, infected, recovered, deceased." RESULTS: For 181 (43%) out of 417 municipalities of Bahia, the first call to the telehealth service reporting COVID-19-like symptoms preceded the first notification of the disease. The calls preceded, on average, 30 days of the notification of COVID-19 in the municipalities of the state of Bahia, Brazil. Additionally, data obtained by the telehealth service were used to effectively reproduce the spread of COVID-19 in Salvador, the capital of the state, using the "susceptible, exposed, infected, recovered, deceased" model to simulate the spatiotemporal spread of the disease. CONCLUSIONS: Data from telehealth services confer high effectiveness in anticipating new waves of COVID-19 and may help understand the epidemic dynamics.


Subject(s)
COVID-19 , Telemedicine , Humans , COVID-19/epidemiology , Brazil/epidemiology , Sentinel Surveillance , SARS-CoV-2 , Pandemics
18.
JMIR Res Protoc ; 11(11): e36583, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2118109

ABSTRACT

BACKGROUND: Chronic tinnitus is an increasing worldwide health concern, causing a significant burden to the health care system each year. The COVID-19 pandemic has seen a further increase in reported cases. For people with tinnitus, symptoms are exacerbated because of social isolation and the elevated levels of anxiety and depression caused by quarantines and lockdowns. Although it has been reported that patients with tinnitus can experience changes in cognitive capabilities, changes in adaptive learning via decision-making tasks for people with tinnitus have not yet been investigated. OBJECTIVE: In this study, we aim to assess state- and trait-related impairments in adaptive learning ability on probabilistic learning tasks among people with tinnitus. Given that performance in such tasks can be quantified through computational modeling methods using a small set of neural-informed model parameters, such approaches are promising in terms of the assessment of tinnitus severity. We will first examine baseline differences in the characterization of decision-making under uncertainty between healthy individuals and people with tinnitus in terms of differences in the parameters of computational models in a cross-sectional experiment. We will also investigate whether these computational markers, which capture characteristics of decision-making, can be used to understand the cognitive impact of tinnitus symptom fluctuations through a longitudinal experimental design. METHODS: We have developed a mobile app, AthenaCX, to deliver e-consent and baseline tinnitus and psychological assessments as well as regular ecological momentary assessments (EMAs) of perceived tinnitus loudness and a web-based aversive version of a probabilistic decision-making task, which can be triggered based on the participants' responses to the EMA surveys. Computational models will be developed to fit participants' choice data in the task, and cognitive parameters will be estimated to characterize participants' current ability to adapt learning to the change of the simulated environment at each session when the task is triggered. Linear regression analysis will be conducted to evaluate the impacts of baseline tinnitus severity on adapting decision-making performance. Repeated measures linear regression analysis will be used to examine model-derived parameters of decision-making in measuring real-time perceived tinnitus loudness fluctuations. RESULTS: Ethics approval was received in December 2020 from Dublin City University (DCUREC/2021/070). The implementation of the experiments, including both the surveys and the web-based decision-making task, has been prepared. Recruitment flyers have been shared with audiologists, and a video instruction has been created to illustrate to the participants how to participate in the experiment. We expect to finish data collection over 12 months and complete data analysis 6 months after this. The results are expected to be published in December 2023. CONCLUSIONS: We believe that EMA with context-aware triggering can facilitate a deeper understanding of the effects of tinnitus symptom severity upon decision-making processes as measured outside of the laboratory. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/36583.

19.
Computer ; 55(11):16-28, 2022.
Article in English | Web of Science | ID: covidwho-2107838

ABSTRACT

With the COVID-19 pandemic, online university education assumed greater importance. We propose a practical e-learning model with suggestions to augment online education of all forms to support effective technical education. We also share our experiences of implementations of some of these suggestions in online teaching.

20.
Front Bioinform ; 1: 667012, 2021.
Article in English | MEDLINE | ID: covidwho-2089805

ABSTRACT

Background: The N-glycan structure and composition of the spike (S) protein of SARS-CoV-2 are pertinent to vaccine development and efficacy. Methods: We reconstructed the glycosylation network based on previously published mass spectrometry data using GNAT, a glycosylation network analysis tool. Our compilation of the network tool had 26 glycosyltransferase and glucosidase enzymes and could infer the pathway of glycosylation machinery based on glycans in the virus spike protein. Once the glycan biosynthesis pathway was generated, we simulated the effect of blocking specific enzymes-swainsonine or deoxynojirimycin for blocking mannosidase-II and indolizidine for blocking alpha-1,6-fucosyltransferase-to see how they would affect the biosynthesis network and the glycans that were synthesized. Results: The N-glycan biosynthesis network of SARS-CoV-2 spike protein shows an elaborate enzymatic pathway with several intermediate glycans, along with the ones identified by mass spectrometric studies. Of the 26 enzymes, the following were involved-Man-Ia, MGAT1, MGAT2, MGAT4, MGAT5, B3GalT, B4GalT, Man-II, SiaT, ST3GalI, ST3GalVI, and FucT8. Blocking specific enzymes resulted in a substantially modified glycan profile of SARS-CoV-2. Conclusion: Variations in the final N-glycan profile of the virus, given its site-specific microheterogeneity, are factors in the host response to the infection, vaccines, and antibodies. Heterogeneity in the N-glycan profile of the spike (S) protein and its potential effect on vaccine efficacy or adverse reactions to the vaccines remain unexplored. Here, we provide all the resources we generated-the glycans in the glycoCT xml format and the biosynthesis network for future work.

SELECTION OF CITATIONS
SEARCH DETAIL